
J. Fluid Meek (1985), vol. 150, p p .  23-39 

Printed in Great Britain 

23 

Large-scale structures in a forced 
turbulent mixing layer 

By M. GASTERt, E. KITAND I. WYGNANSKI 
Faculty of Engineering, Tel-Aviv University 

(Received 15 November 1982 and in revised form 19 June 1984) 

The large-scale structures that occur in a forced turbulent mixing layer at moderately 
high Reynolds numbers have been modelled by linear inviscid stability theory 
incorporating first-order corrections for slow spatial variations of the mean flow. The 
perturbation stream function for a spatially growing time-periodic travelling wave 
has been numerically evaluated for the measured linearly diverging mean flow. In  
an accompanying experiment periodic oscillations were imposed on the turbulent 
mixing layer by the motion of a small flap at  the trailing edge of the splitter plate 
that separated the two uniform streams of different velocity. The results of the 
numerical computations are compared with experimental measurements. 

When the comparison between experimental data and the computational model 
was made on a purely local basis, agreement in both the amplitude and phase 
distribution across the mixing layer was excellent. Comparisons on a global scale 
revealed, not unexpectedly, less good accuracy in predicting the overall amplification. 

1. Introduction 
High-Reynolds-number flows are generally dominated by broadband velocity 

fluctuations. Although this so-called ‘turbulence ’ is often treated as a random process 
through various averaged statistical quantities, it does seem that there can be some 
degree of order buried within the apparent chaos. Flow visualization has shown that 
large-scale (low-frequency) oscillations occur in certain types of flow in the form of 
travelling waves, whilst in other flows it seems that discrete large-scale isolated 
‘events ’ develop. Wavelike behaviour is most prevalent in unbounded flows, like jets, 
wakes or free mixing layers. These flows are especially sensitive to external excitation, 
or ‘forcing’. Even very weak external disturbances can influence the flow markedly; 
the developing unsteady wave motion inevitably reflects the level and character of 
the natural disturbances in the flow. 

The travelling-wave structures that can be seen so clearly in some flow visualizations 
of turbulent jets or mixing layers are quite similar to those seen in laminar jets or 
mixing layers. This similarity between the patterns in laminar and turbulent states 
is not very surprising in view of the fact that the basic long-wave vorticity-transport 
instability mechanism is mainly controlled by the mean-velocity profiles of the flow, 
and these are not too different in the two situations. The roll-up process that can be 
seen in smoke or dye patterns in laminar flows can be explained in terms of an 
instability of the mean flow, and a linear calculation is often capable of providing 
a reasonably good estimate of the initial development of this process (Michalke 1965). 
The notion that a turbulent flow, even though it contains a fine-scale structure, is 

t Permanent address: National Maritime Institute, Teddington, Middlesex, U.K. 
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also unstable in the above sense is not at all new (see e.g. Malkus 1956; Landahl 1967; 
Liu & Merkine 1975; Hussain & Reynolds 1970). The fine-scale turbulence provides 
additional mixing on a small scale and behaves like an added ‘eddy’ viscosity on the 
mean and large-scale motions. As viscosity is in any case not of primary importance 
in these inviscidly unstable free shear flows, i t  seems that the fine-scale turbulence 
plays no significant role in the development of the large-scale motion. This decoupling 
of the fine-scale turbulence from the large structures enables classical stability theory 
for laminar flows to be applied to certain types of turbulent motion. 

It is convenient to study instabilities experimentally through the introduction of 
known controlled disturbances. This has commonly been done in experiments on 
laminar flows by direct mechanical devices, like the vibrating ribbon used by 
Schubauer & Skramstad (1947), or by acoustic excitation (Freymuth 1966). Artificial 
excitation by some form of periodic forcing, at the nozzle or lip where the separated 
shear layers form, creates an isolated wavetrain that can be related to a spatial 
eigenmode of the equations of motion. Broadband excitation, occurring with high 
levels of free-stream turbulence, creates a modulated wavetrain composed of many 
modes. Although the artificially triggered periodic wavetrain is a gross oversimpli- 
fication of the broadband motion that occurs in most physical flows, its study will 
hopefully provide a basis on which to build a more representative model of the 
large-scale structures that are observed in the unforced case. 

Here we are concerned with the behaviour of a periodically forced turbulent mixing 
layer (Oster & Wygnanski 1983). The laboratory mixing layer was formed downstream 
of a splitter plate separating two uniform streams of different velocities issuing from 
a specially constructed open-return wind tunnel. A small flap hinged at  the trailing 
edge of the splitter plate was driven at  a given frequency so as to introduce a 
controlled periodic oscillation into the mixing layer. Experiments similar to that 
described in this paper have previously been carried out on a laminar shear layer 
excited by an acoustic source. Data from that extensive set of measurements 
(Freymuth 1966) have been compared with the linear stability calculations of 
Michalke (1964,1965) for both temporal and spatial modes. Freymuth’s measurements 
of local growth rates and wave speeds correlated rather more closely with those 
derived from the spatial theory than those calculated from the temporal model via 
a spacetime transformation. More detailed comparisons of the eigenfunctions with 
the measured distributions of velocity fluctuations across the flow provided positive 
support for the spatial representation. Temporal modes, although convenient as far 
as computations are concerned, do not properly describe the oscillatory flows that 
actually occur in experiment. 

The Rayleigh equations, which were used by Michalke for the determination of 
eigenvalues and eigenmodes, are obtained by linearization of the inviscid disturbance 
equations for a parallel mean flow. The assumption of a parallel base flow enables 
the equations to be separated in Cartesian coordinates, and the modal decomposition 
can then be accomplished through the solution of ordinary differential equations. In 
some flows the use of parallel-flow approximation is untenable and it is necessary 
to obtain solutions of the partial differential equations that describe the distur- 
bance more completely. Provided that the mean flow deviates from a parallel flow 
sufficiently slowly, approximate solutions to the partial differential equations can be 
obtained in terms of scaled solutions of the ‘locally parallel-flow ’ stability problem, 
and again this only requires the integration of ordinary differential equations. The 
scaling function can be obtained by a multiple-scale expansion in terms of a suitable 
small parameter defining the slow variation of the mean-flow velocity profile with 
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the streamwise coordinate. Alternatively, an iteration scheme can be devised to 
generate a correction series to the locally parallel-flow solution (see Gaster 1974). 

Bouthier (1972, 1973) used the multiple-scale technique to provide a more 
consistent, and (it is to  be hoped) more accurate, analysis of spatially growing waves 
in the laminar boundary layer of a flat plate. The first-order correction to  the 
Orr-Sommerfeld solution certainly improved correlation between experiment and 
theory, but some discrepancies remain. The flat-plate boundary layer deviates from 
a parallel flow only very slowly, and i t  is perhaps not surprising that the correction 
to the amplification rates in this case is hardly significant. Corrections become more 
important in flows like jets and mixing layers that  spread rapidly. Crighton & Gaster 
(1976) computed growth rates and phase speeds of the large-scale turbulent structures 
in an axisymmetric jet, taking the effect of spatial growth into account, and obtained 
encouraging agreement with the experimental data of Crow & Champagne (1970). I n  
these computations the first-order corrections to  wave speed and amplification rates 
turned out to be significant. 

The large-scale structures that occur in a turbulent mixing layer have also been 
studied experimentally by many authors (Ho 1981 ; Fiedler et al. 1981), and some of 
the data have been compared with predictions based on laminar stability theory. 
Much of this work has been carried out on the mixing layer between two moving 
streams. Although the shape of the resulting velocity profile has been shown to be 
reasonably close to the ‘tanh’ profile used by Michalke in his calculations of the 
stability of the laminar flow where one of the streams was stationary, there is an 
additional translational velocity component superimposed on the mean flow when 
both streams are moving (i.e. when the velocity ratio is non-zero). Fiedler et al. (1981) 
achieved some success in linking Michalke’s data gathered from a forced mixing layer, 
but in their case the velocity ratio was zero, and the comparison with spatial theory 
was straightforward. The velocity ratio turns out to have a sizeable effect on both 
the shapes of the spatial eigenfunctions and on the eigenvalues themselves, as recently 
demonstrated by Monkewitz & Huerre (1982). Thus, although qualitatively the 
temporal instability model can be used as a rough guide of the local growth rates and 
phase speeds, the detailed overall picture of the evolution of waves in a mixing layer 
obtained in this manner is likely to  compare poorly with experiment (Oster & 
Wygnanski 1983). 

In  this paper we relate the flow-field measurements obtained in a forced turbulent 
mixing layer to predictions based on linearized theory that is scaled to account for 
slow mean-flow divergence. The velocity fluctuations were recorded for various 
stream velocities and velocity ratios, at different frequencies and levels of excitation. 
The amplitude of the flap oscillations was kept small so that  linearized theory would 
be applicable, at least in the initial region of growth. It was found that the mean flow 
was only slightly influenced by the imposed excitation. A similarity mean-flow 
structure was obtained, with the velocity profile close to the ‘tanh’ shape used in 
previous calculations. The thickness of the shear layer was found to increase almost 
linearly with distance downstream from some virtual origin near the trailing edge 
of the flap. The locally parallel flow eigenvalues and eigenfunctions were used in an 
expansion scheme to obtain first-order corrections for the effects of flow divergence. 
The resulting predictions of the velocity fluctuations throughout the region supporting 
unstable wavetrains are compared with phase-averaged measurements of the forced 
turbulent flow. 



26 M .  Caster, E .  Kit and I .  Wygnanski 

2. Analysis 
An approximate solution of the equations defining the propagation of small- 

amplitude wavy disturbances is sought for the slow diverging mixing-layer flow. 
Viscosity has virtually no effect on the behaviour of the highly amplified waves that 
arise in these flows, and consequently the viscous terms will be neglected. 

We apply the method used by Crighton & Gaster (1976) to the two-dimensional 
mixing layer so as to generate a first-order correction to the quasi-parallel-flow 
perturbation stream function in the form 

where 6 and 7 are non-dimensional coordinates in the free-stream and normal 
directions, linked to the physical quantities x and y through the chosen scale 
L = ( U2 - 0,) C0/2ltf, in which 0, and U2 are the velocities of the faster and slower 
streams respectively, f is the excitation frequency and C,  is a constant equal to a 
dimensionless w ,  and t is dimensionless time. Therefore 7 = y / L  and 6 = C , x / L ;  the 
numerical values of C,  and C, will be determined later. 

The function A(6) is defined by 

and 
M ( c )  = J + m  (2014, + U[#,"- 3a2$,] - p$,) $, dy. 

In  these expressions $,(& 7)  is the 'local' eigenfunction obtained from the Rayleigh 
equation 

- m  

(u(&7)-;) ($;-a2$,)- V ( E , T ) $ o  = 0 (2.3) 

and 3, is the adjoint eigenfunction. Note that, at any streamwise location 6 ,  only the 
7-dependences of U ,  U' and are needed. Consequently for a given excitation 
frequency the eigenvalue 01 is defined as a function of 6 only. 

- -  

3. Computation 
The mean flow was assumed to have a similar velocity profile throughout the 

computational region, extending from the virtual origin of the flow (6 = 0 ) ,  to a 
position downstream (6 = 1) where linear amplification of the excited wave ceased 
(i.e. ai = 0). The chosen velocity profile family was of the form 

u- u, 
U2-U1 - 2 

~ - A [ 1 + F ( f ) ] ,  

where is the local mean velocity. Michalke considered a parallel flow independent 
of x for the case U,  = 0 and represented F by tanh y. Initial computations were made 
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on this profile shape in order to check our numerical procedures for finding the 
eigenvalues and eigenfunctions, but most of the numerical results presented here were 
obtained with the more appropriate velocity function given later in (5.2). 

A rectangular computational zone extending from & = 0.082 to & = 1 in the stream 
direction, and from q = - 1.5 to q = 1.5t across the flow was used. 50 intervals 
(A6 = 0.018) were generally taken in the stream direction and 400 were used across 
the flow. The prediction of the wavetrain to lowest order required the solution of 
the ordinary differential equations defining the local structure (2.3), as well as the 
evaluation of the integrals in (2.2) that provide the amplitude scaling A(5).  

It was found that specifying the constant Co in the definition of L ast  

where 

provided a neutrally amplified mode at the end of this computational domain (& = 1).  
This relates the normalizing lengthscale L to the physical frequency and velocity 
difference. For this frequency the eigenvalues a({) and the eigenfunctions $(El q )  were 
evaluated at  each of the streamwise locations. The eigensolutions were obtained by 
a standard shooting technique that used a 4th-order RungeKutta procedure to 
integrate (2.3) from one boundary to another. Iteration on a(&) was carried out until 
solutions compatible with the necessary exponential decay both above and below the 
mixing layer were obtained. 

These solutions q50(& q )  with their derivatives q5;(x, h) and q5: etc. were stored on 
disc, together with the adjoint function &(&, q ) ,  which was evaluated in a similar way 
from the differential equation adjoint to (2.3). A second program used these stored 
solutions to evaluate the integrals Nand M ,  across the flow field. In the computation 
of M and N it was necessary to form derivatives of a(&), G(E, q ) ,  G’(&, q ) ,  G”({, q ) ,  
q50({,q), etc. with respect to 6 by differencing neighbouring sets of data. A further 
program then introduced the necessary mean-flow divergence d8/dx (defined in (5.1)) 
and finally evaluated the amplitude scaling function. 

4. Experiments 
Measurements of both mean and fluctuating velocities were made in a periodically 

forced turbulent mixing layer that formed downstream of a splitter plate separating 
two streams of different velocities. A detailed description of the wind tunnel and 
experimental procedure is given by Oster & Wygnanski (1983). 

Two-dimensional sinusoidal oscillations of small amplitude were generated in the 
flow by the motion of a thin flap of 1 cm chord hinged to the trailing edge of the 
splitter plate. The flap was actuated by an electromagnetic driver fed by an electronic 
signal generator. During the experiment a theodolite was used to monitor the flap 
motion under stroboscopic illumination in order to ensure that the amplitude 
remained constant. 

A 10-element rake of hot-wire probes was used to survey the shear layer. The rake 
was mounted on a carriage that could be traversed in directions both normal and 

t For the ‘tanh’ velocity profile the computational range extended from - 3  t o  +3,  and 
C, = 0.5/A. 

2 P L Y  150 
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parallel to the flow. Typically 2-3 transverse locations were used in the normal 
direction at a given streamwise position so as to provide between 20 and 30 measuring 
points across the shear layer. The voltages generated by the hot-wire anemometers 
were digitized to  12 bit resolution and written on a magnetic tape. Most of the 
measurements reported were made a t  downstream distances of between 200 mm and 
lo00 mm from the flap trailing edge, covering approximately 5 wavelengths for the 
data in set I. 

Three sets of experimental data were acquired. For each set the velocities of the 
two streams forming the mixing layer, the frequency and amplitude of the flap 
oscillation were kept constant. Each set of data contained measurements from some 
20 streamwise locations. 

At each station the mean-velocity profiles were obtained by averaging the velocity 
records in a conventional manner, using the computer to  linearize the raw hot-wire 
anemometer data. The digital records from each measuring point were also processed 
on the computer to provide the fundamental component of the signal that  was phase- 
locked to  the flap motion. The records were phase-averaged over 200 sample blocks, 
each of which was equivalent to a single cycle of the flap motion. The Fourier 
transform of these averaged records then provided the phase and amplitude estimates 
of the spectral elements of the velocity field largely free from the random turbulence 
present in the original signals. 

5. Results 

conveniently expressed by 
The growth rate of the mixing layer with increasing downstream distance is most 

The variation of 0 with distance from the trailing edge of the splitter plate is shown 
in figure 1 for each of the three data sets. The measured momentum thickness 
increases almost linearly from some origin near the flap a t  a rate that depends on 
the velocities of the two streams and to  some extent on the level and frequency of 
the excitation (see also Oster & Wygnanski 1983). The rate of spread of the mixing 
layers is given by the slopes of these lines. I n  each case dO/dx 4 1, which is entirely 
consistent with the assumption of slow divergence that was made in the analytical 
treatment of the flow stability. 

Some important mean-flow parameters governing each data set are given in table 1 ,  
in which a, is the amplitude of the flap oscillation and x,, is the virtual origin a t  
which 6 = 0. 

The mean-flow velocity profiles are plotted on figure 2 in similarity variables. A 
very good collapse is evident, but the resultant mean does not fall on the ‘ tanh ’ profile 
shape that has so often been used to  describe the flow of mixing layers. A polynomial 
fit based on the ‘tanh’ profile and its derivatives was found to provide a better fit 
to the data :t 

-~ 

u, - u1 (5 .2 )  

t This form was suggest,ed by Dr. R .  E. Kaplan, from the University of Southern California. 



Large-scale structures in a turbulent mixing layer 29 

FIQURE 1. The variation of the momentum thickness with distance from the trailing edge. 

dx - 
Set Ul (m/s) Ug (m/s) h dB zo (mm) f(W a, (mm) 

I 3 5 0.25 85 50 20 0.5 
I1 2 5 0.43 54 60 20 0.5 

I11 4 10 0.43 54 0 20 1 .o 
TABLE 1 

where the transverse distance y in the definition of r] was measured from the location 
at which (0- ul)/(02- U1) = 0.5. Substituting (5.2) into (5.1) yields 

- 0.2467C1, 
de 
dx 
_ -  (5.3) 

and therefore the constant C,  is linked to the physical rate of spread of the mixing 
layer by C,  = (dO/dx)/0.2467, making 

(X - x,,) dO/dx ' = 0.2467L 

and 

where 0 is the local momentum thickness defined by (5.1). It is interesting to note 
that on the high-velocity side of the flow the local mean velocity can exceed U2 by 
approximately 1 %, resulting in dU/dq < 0 near the edge of the shear layer. 

We now turn our attention to the fluctuating components of the flow. The 
2-2 
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0 I 

FIGURE 2. The mean-velocity distribution in a plane turbulent mixing layer. 

amplitude of the fundamental component of the artificially excited wavetrain at  each 
streamwise station can be defined in terms of the integral of the modulus of the 
fluctuating velocity u' evaluated across the mixing layer 

C" lu'ldy. (5.4) 
J -" 

Measured amplitudes defined in this way are plotted on figure 3 together with the 
results of the numerical computations for the theoretical model. Since the computed 
and the measured integral values were normalized with respect to the first reference 
x-location at  which the mean flow was self-similar, figure 3 represents a measure of 
overall amplification; this was approximately equal to 4 for data sets I and 11, and 
9 for data set 111. Theoretical amplifications are also presented on this figure for the 
modified mean-velocity profiles, and in one instance for the ' tanh ' profile as well. 
Correlation between calculated and experimental growth is not very good, although 
it is quite reasonable in view of all the assumptions and approximations made in 
formulating the mathematical model. The choice of mean-flow velocity profile clearly 
affects the calculated amplification rates (figure 3, set 111) and, as we shall see later, 
also the shape of the local eigenfunction. The different amplification patterns shown 
on figure 3 give some indication of the effect of small variations in the mean-velocity 
profile. The modified profile shape given by (5.2) was found to fit the experimental 
data better, and all further numerical results reported here are based on that family. 

Figure 4 shows a comparison between measured and computed phase angles along 
3 different rays (yl corresponds to the locations at  which (0- ul)/( 0, - ul) + 1 ; yi 
corresponds to ( g -  gJ/( 0, - ul) = 0.5, and the value of (0- Dl)/( g .  - ol) at yo 
approaches 0). The phase clearly advances more rapidly in the faster-flowing regions, 
a trend modelled by the first-order correction to the parallel-flow solution. The 
theoretical phase information shown in figures 5 and 6 on an expanded scale (around 
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a 
1, 

10 -I 

1 h = 0.25 dx - -= 85 - L=48mm d0 

- U, = 3 m/s 
- xo = 50 mm 

- f= 2 0 H z  St=O.24 o o o o  0 -  

- h = 0.43 

- f = 2 0 H z  StzO.22 
- U, = 2 m/s 
- x o = 6 0 m m  

1 h = 0.43 

0 1 

FIQURE 3. The overall amplification of disturbances with 
distance from the trailing edge. St = fL/U, .  

0 1 

5 

FIQITRE 4. The dependence of phase on distance from the trailing 
edge at three lateral locations in the shear layer. 
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I 1 I I I 

A = 0.25 

dx' 
de 

xo = 50 mm 

- = 8 5  f= 20Hz 

L = 48 mm Sr = 0.24 
U ,  = m/s 

Yo 

I I I I I I I I I I 
0 1 

5 
FIQURE 5. Calculated variation of phase velocity with distance from 

the trailing edge (corresponding to data set I). 

0.9 I 

I I I I I 

A = 0.43 'Sr  = 0.22 I 

0.9 I I I I I I I I 1 
0 1 

5 
FIQURE 6. Calculated variation of phase velocity with distance from 

the trailing edge (corresponding to data set 111). 

U ,  = 0.5( Vl + 0,)) for the abovementioned rays also shows the theoretical wave 
speed calculated on the basis of a locally parallel mean flow. For the purpose of these 
calculations the integral steps across the flow had to be reduced by an order of 
magnitude in order to suppress spurious oscillations in the numerical solution of the 
phase velocity in the range 0 < < 0.4. 
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2.5 

7 0  

-2.5 

f = 0.249 

x1-xo 
= 250 mm 

0.349 

345 mm 

t 
7 

A = 0.25 f = 20 HZ 

dB 85 U, = 3 m / s  

L = 48 mrr 
dx st = 0.24 X, = 50 mN 
-= 

0.847 

849 mm 
b a 
4 
9 
0 

Normalizedampli tudes 

FIQURE 7. The lateral distribution of u’ for the forcing frequency 
at various [-stations (data set I). 

f=0.196 

= 200 mm 

7 0  

-2.5 

0.294 

300 mm 
Zmm 0.442 1:z‘ I700mm 0.688 

L = 7 6 m m  
CJ,=4m/s f = 2 0 H z  
Sr = 0.22 
Normalized amplitudes 

0.786 
800 mm 

t 
7 

FIGURE 8. The lateral distribution of u’ for the forcing frequency 
at various [-stations (data set 111). 

Another test of the mathematical model is provided by the amplitude and phase 
profiles across the mixing layer at various positions downstream from the flap. 
Figures 7 and 8 show the modulus of u’ for the fundamental frequency at 6 stations 
for both experiment and theory for data sets I and 111. In these figures the velocities 
have been normalized by equating the experimental and theoretical integrals 
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-2.5 
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Phase 

0 

FIGURE 9. The lateral distribution of phase angles at various &-stations (data set 111). 

calculated according to (5.4). Close to the flap, a single narrow central peak in lu'l 
is evident in both the experimental results as well as in the numerical solution. The 
two side lobes become progressively stronger with increasing distance from the flap, 
and by the end of the computational zone they become larger than the central peak. 
Apart from some detailed differences near the centreline, this trend is followed by 
the numerical solution, although correlation with experiment does not noticeably fall 
off far downstream. The experimental points contain far more scatter in the 
downstream region and this suggests that the overall flow pattern is not very steady 
there. Finally, the measured and computed phase profiles are compared for data 
set I11 on figure 9. The phases are shown relative to that at the centre of the mixing 
layer (7 = 0) .  The agreement between the measured and computed results is really 
extremely good, every jump and variation being almost perfectly reflected by the 
theory. 

6. Discussion 
In this paper we are trying to examine the extent to which the large-scale vortex 

structure that develops in a fully turbulent mixing layer can be described by an 
inviscid linear model. 

An ' unexcited ' free mixing layer developing downstream from the trailing edge 
of the splitter plate will inevitably contain a large-scale oscillatory motion. The 
structure of the unsteady flow can be revealed through measurements of various 
kinds, but the overall flow pattern can often be resolved more directly with the aid 
of an appropriate flow-visualization technique. Apart from the fine-scale turbulence 
that is always present, one can then pick out the large-scale organized structures that 
appear in the flow. These structures appear as vortices that originate fairly close to 
the splitter plate. They grow as they propagate downstream, and eventually roll up 
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and coalesce to form larger vortices. The process appears to be closely two-dimensional, 
but is irregular, especially so after the first stage of vortex pairing. A very much 
clearer picture of the early stages of this process can be seen when the flow is 
artificially excited by a suitably chosen periodic disturbance, such as a trailing-edge 
flap., The flow then has a far more controlled behaviour, with the vortices forming 
and travelling downstream in a more-or-less regular manner. Again at sufficient 
distance from the splitter plate, the vortices will coalesce and form a new vortex 
pattern at the subharmonic frequency, but the process is noisy and no longer precisely 
locked to the motion of the flap. It turns out nevertheless that the motion under 
artificial excitation is reasonably representative of that in the unexcited case, except 
that the random element is considerably reduced. 

The periodically forced case is considered in this paper, and comparisons of the 
observed large-scale vortex structures are made with a theoretical model of a spatially 
growing instability wave that is precisely periodic. Again the theoretical model is 
linear and inviscid, and takes no account whatsoever of the fine-scale turbulence that 
is present in the flow. The analysis is concerned with the prediction of the behaviour 
of an isolated periodic wavetrain propagating in a given mean flow. It has been 
assumed that the mean flow departs only slowly from a parallel-flow geometry, and 
that a weak modification of parallel-flow stability theory is sufficient to describe the 
resulting solution. In  order to simplify the computations further, the mean flow was 
treated as a similarity flow that spreads linearly with downstream distance. This is 
quite a close model of the experimentally measured mean flow. 

The inviscid mathematical model can only define amplified modes. If it were 
required to carry the calculation of a particular wavetrain through the neutral 
stability point, certain modifications to the equations, such as the inclusion of a small 
amount of viscosity, would have to be made. This was not necessary in the present 
exercise, where we were trying to demonstrate that a simple inviscid model was 
capable of describing the developing time-periodic instability of the flow within the 
region of amplification. The more interesting problem of a naturally excited flow, 
which involves the superposition of a broad band of periodic wavetrains (some of 
which are damped), does require some such modification. In that case the resultant 
solution would be expected to have a narrow spectrum such that the frequency of 
its peak would fall with distance from the splitter plate, because the high-frequency 
components become damped, whilst the waves of lowest frequency increase rapidly. 
It would certainly be well worth modifying the numerical procedures used here so 
as to compare the resulting solutions with experimental data derived from a mixing 
layer ; first, forced by a flap driven by a pseudo-white-noise generator ; and, secondly, 
when excited by the natural ‘noise’ content of the incoming turbulence. We believe 
that the broadband linear model would still provide a useful description of the 
disturbance. 

The neglect of the nonlinear terms in deriving the basic perturbation equations was 
another very necessary simplifying assumption, but one that needs to be questioned 
in view of the observed amplitudes of the velocity fluctuations associated with the 
forced waves. Spectral analysis of the experimental axial-velocity fluctuations 
provide a measure of that fraction of the energy contained in a narrow band of 
frequencies centred on the forcing frequency (figure 10). At 6 = 0.196 the maximum 
intensity of broadband signal in the streamwise direction was equal to 0.24; some 
20% of this energy fell within a narrow band around the forcing frequency. A t  
6 = 0.786 the maximum overall level of fluctuation was 0.18, corresponding to the 
value commonly observed in an unforced fully turbulent plane mixing layer, but here 
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6 = 0.196 0.294 

=20 mrn 

0.442 1 0.589 I :$Am 10.786 
449mm 600mm 800 rnm 

U, = 4m/s 

Sr = 0.22 x, = O  

f = 20 Hz 

0.3 0.3 0.3 0.3 - 3 

W ) * ) V ( U * -  U,) 

FIWRE 10. The overall turbulent intensity of the u’ fluctuations and the fraction of energy 
contained at the forcing frequency (data set 111). 

45% of the energy occurred at  the forcing frequency. These levels of velocity 
fluctuation cannot be considered as small perturbations of the mean flow, and it is 
not at all obvious that linearization of the equations of motion is entirely justified. 
Nevertheless, i t  turned out that the linear theory did seem capable of describing the 
flow surprisingly well, and this needs to be explained. Solutions of weakly nonlinear 
stability problems usually rely on the idea that the actual eigenfunction of the 
fundamental part of the motion are given by a linear calculation, and it is only 
through the balance of terms that an amplitude scaling is defined. It is therefore 
perhaps not too surprising that the details of the phase-locked velocity fluctuations 
are modelled quite well by the linear theory, unlike the prediction of the overall 
amplification, which is limited by the additional factors of dissipation and energy 
transfer to the fine-scale turbulence (Hussain 1983). 

Another aspect of the nonlinearity concerns the determination of the mean flow. 
In  our treatment the mean flow is assumed to be known a priori, whereas the 
nonlinear ‘Reynolds stresses ’, arising from the unsteady flow, control the spreading 
rate while maintaining self-similar mean-velocity profiles. It is conceivable that the 
‘Reynolds stresses’ could be estimated well enough from the linear calculations to 
provide closure, but such a calculation has not been attempted. The stability of the 
periodic-wave solution that has been obtained also warrants study. It may be 
expected that the resulting vortex pattern will be unstable to certain disturbances. 
This is presumably involved in vortex pairing and in the generation of subharmonic 
oscillations. 

It is interesting to note that the present linear theory nevertheless seems to give 
some intimation of the vortex roll-up process. While phase velocities calculated on 
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FIGURE 11. The effects of the choice of the mean-velocity profile on the predicted amplitude 
distribution at large distances from the trailing edge. 

the basis of a parallel mean flow inevitably produce a uniform convection velocity 
across the shear layer, theories that  take account of flow divergence do predict a 
variation of phase speed with location. The present computations predict that  the 
phase advance is greater than average in the outer regions of the faster-flowing stream 
and lower than average in the slower-moving stream, which is in agreement with the 
experimental data as shown in figure 4. The faster-moving vortex structures thus 
appear to ride over the slower-moving ones, and are located so as to be more readily 
rolled up and fused into a smaller number of large vortices as in a subharmonic motion. 
It is worth noting further that  wideband space-time correlation measurements taken 
in an unforced turbulent mixing layer (Oster, Wygnanski & Fiedler 1977) indicated 
a similar pattern of behaviour for the large-scale structures. I n  fact the phase 
velocities measured by Oster et al. at A = 0.43 agree quantitatively with the present 
results. 

Although the velocity-profile shape used in the present computations differed only 
slightly from the ‘tanh’ profile that  has traditionally been used in mixing-layer 
stability work, this has had significant effect on the detail of the theoretical 
predictions. Close to the trailing edge of the splitter plate, where the mixing layer 
is thin compared with the wavelength of an instability mode, the behaviour of the 
perturbation is controlled solely by the velocities of the two streams. Farther 
downstream the mixing layer becomes thicker, and, when i t  has a dimension 
commensurate with the wavelength, details of the profile shape become important. 

Then the predicted amplification rates and the amplitude distribution of the 
fluctuations are influenced by the actual shape of the profile, and in particular by 
the curvature. I n  figure 11, the amplitude distribution predicted by using the ‘ tanh ’ 
profile is compared with the amplitude distribution using the modified profile (5.2) 
at approximately the same dimensionless computational coordinate. The results 
obtained from the modified profile agree much better with experiment a t  the stations 
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indicated in the figure, because the shape of the velocity profiles affects the constants 
C,, and C, (determined in (3.2) and (5.3) respectively) and therefore the ratio between 
the physical and computational distances. The use of the ‘tanh’ profile in the 
theoretical model required comparison with experimentally obtained perturbation 
profiles at stations farther downstream (for the same dimensionless coordinate E ) ,  by 
which point the agreement with the computed eigenfunctions was poor. The different 
profile shapes also cause differences in the overall amplification as exemplified in 
figure 3, where at the end of the computational zone the perturbation associated with 
the tanh profile had undergone an amplification which is 3.5 times larger than the 
corresponding amplification of the modified profile (data set 111). 

7. Conclusions 
The large-scale vortex structures that occur in a forced mixing layer have been 

modelled by a linear inviscid stability theory. Experimental measurements showed 
that the mean flow in the region considered conformed well to a similarity model 
having a velocity profile close to, but not identical with, the ‘tanh’ shape. The 
thickness of the mixing layer was found to  increase almost linearly with distance from 
some origin close to  the trailing edge of the splitter plate. The velocities associated 
with the large-scale organized structures were measured and compared with the 
distribution predicted by the theory. Comparisons of both the magnitude and phase 
of the velocity fluctuations across various sections of the flow showed remarkable 
agreement. The overall integrated behaviour involving the amplification along the 
mixing layer compared less favourably with the theoretical calculations, and this may 
have been due to  the neglect of the nonlinear terms. 

The authors wish to thank Professor E. Reshotko for reading and commenting on 
the manuscript. This research was supported in part by the U.S. Air Force Office of 
Scientific Research under grant 77-3275. 
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